St Peter’s Catholic Primary School

Mathematics Calculation Policy

Agreed by Governors: November 2017
Chair of Governor \qquad

St Peter' Catholic Primary School Maths Calculation Policy

This policy has been written in response to the New National Curriculum September 2014, and aims to ensure consistency in the mathematical written methods and approaches to calculation across years 1-6.

> "Children learn about calculation through solving problems, rather than solving problems after learning to calculate."
> "Children are introduced to the processes of calculation through practical, oral and mental activities."

Over time children will learn how to use models and images, such as empty number lines, to support their mental and informal written methods of calculation

Our aim is that children leave us equipped with mental, written and calculator methods they understand and can use correctly and that when faced with a calculation, they are able to decide which method is most appropriate and have strategies to give an approximate answer and to check their solutions.

This policy indicates the progression and variety of practical and written methods within each of the four operations. Children will work at the stage appropriate to their understanding. All methods will be used across a range of contexts e.g. money, measures, time etc and will be applied to decimals as appropriate. It is important that children use the many different models.
This policy also outlines the key vocabulary to be used and introduced at each stage to ensure opportunities for children to develop quality mathematical dialogue.
The needs of Foundation Stage will be met through Development Matters and Early Learning Goals. The document is organised according to age related expectation, however it may be necessary for teachers to consult with lower year groups for children in order to meet their needs at the stage these children are working at.

Whilst the New Curriculum for September 2014 does not feature Using and Applying, it is important, wherever possible, for teachers to create real life contexts for learning in mathematics. As part of a child's learning in calculation, they need to be taught how to select the best method according to the numbers. The hierarchy of thinking should be:

THE STATUTORY REQUIREMENTS:

"Early learning goal - numbers:
Children count reliably with numbers from one to 20 , place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two singledigit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing."

The National Curriculum framework shows progression in the 4 rules of number and is, generally, quite explicit at stating during which year certain concepts and skills should be taught. There are, however, gaps and this policy has tried to address this and provide staff with more guidance.

MODELS AND IMAGES:

Key to the successful implementation of a School Calculation Policy is the consistent use of representation (models and images that support conceptual understanding of the mathematical issues) and this policy promotes a range of relevant representations, across the Primary years. Mathematical understanding is developed through use of representations that are first of all concrete (e.g. Numicon, Dienes apparatus, place value counters), and then pictorial (e.g. Array, number lines) to then facilitate abstract working (e.g. Columnar addition, long multiplication).
It is considered good practice to demonstrate and allow children to practice each and every step physically using the apparatus and models listed below, regardless of ability and year group. It is equally important to put calculations into context and for children to explore calculation in order to gain mastery.

Number lines -

Because the concept is so simple, number lines can pretty much take any shape you like to help a child visualise the problem in a slightly different way. For example, they can extend vertically and are called number ladders. Number lines are an invaluable tool all the way through a child's time at primary school. It is important to get children in the habit of thinking about whether drawing their own number line will help them to solve a problem.

Initially, number lines should feature numbered intervals, but then children should be given blank number lines to allow greater freedom and to demonstrate depth of understanding.

There are many ways to travel along a number line - some more complicated than another - all methods will be taught and children will use method they are happiest with. They should first be used in Year 1, but are also useful in other years as shown below:

In Year 4, children start to use a number line to understand the concept of negative numbers:

From Years 4 to 6, children would need to place decimal numbers and fractions onto a number line. For example, they may be asked to write what fraction this arrow is pointing at:

They may also be asked to write what decimal this arrow is pointing at:

Number scales/balances - allows children to see totals and number facts. (also coat hanger and pegs) 100 squares - allows children to count on/back and also recognise patterns in repeated addition/multiplication.
Multiplication square - supports rote learning.
Numicon - number recognition, addition, subtraction, doubling, multiplication
Arrow cards - useful for bridging and for x / \div by 10,100 etc. also for understanding of place value concepts
Arrays - used to show groupings of items -ideal for early multiplication.
10 boards - allows bridging ten $-9+7=9+1+6=10+6=16$
Bead Strings - all 4 rules
Bundles of straws - ideal to make 10
Triangles - 2 corners add up to the third (also 1 less 1 gives the third)
2 corners multiplied together give third corner (also inverse - division)
Missing number boards - ideal to show : $3+2=$?..... $3+$? $=5$
Bar models:

5		
2	3	
3		2

ADDITION

Early Mathematical development

Mental skills	Written strategies
Counting on in ones from different starting points up to 10	Children are encouraged to develop a mental picture of the number system in their heads to use for calculation through access to a wide range of counting equipment, everyday objects, hoops, sorting trays and number tracks. Discuss - 1 more, 1 less. Recognise numbers O to 10 012345678910
YEAR 1	
Mental skills	Written strategies

	The Four Operations Addition - Partitioning for 2 digit +2 digit -Number Line/Ruler $-2^{\text {nd }}$ digit is partitioned $16+12=$ 12 is partitioned into $\mathrm{T}+\mathrm{U}$ $12=10+2$ Use numberline and/or Numicom. Followed by adding the tens in one jump and the units in one jump. Addition using a number line $25+36$ Children will begin to use 'empty number lines' themselves starting with the larger number and counting on.
	YEAR 3
Mental skills	Written strategies - formal ${ }^{\text {st }}$ introduced
Use mental recall of addition and subtraction facts to +/3d with 1, 10, 100. Use inverses to find missing whole numbers such as 'I think of a number I take 5 away from it. The answer is 35. What is my number?	Add 3-digit number and 2-digit number - eg by numberline partitioning

	Column Addition $\begin{array}{lll} 49+31+124+331=? \\ \hline 4 & 9 \\ 3 & 1 \\ 1 & 2 & 4 \\ 3 & 3 & 1 \\ \hline ? & 3 & 5 \\ \hline 1 & 1 & \end{array}$
YEAR 5	
Mental skills	Written strategies
Add and subtract numbers mentally with increasingly large numbers. Use rounding to check answers.	The expanded method leads children into the more compact method so that they understand its structure and efficiency. Introduction of negative numbers allows number lines to be re-introduced and used by children. Here is part of a number line. Write the missing numbers in the boxes. Adding numbers with more than 4-digits. Simple and more complicated.
YEAR 6	
Mental skills	Written strategies
	All of the above.

VOCABULARY

SUBTRACTION

Early Mathematical development	
Mental skills	Written strategies
Counting backwards from different starting points with numbers up to 10	Children are encouraged to develop a 'mental picture' of the number system, models will be used by the teacher to demonstrate what happens as the children count back within number rhymes an d stories.... ONE LESS $10,9,8,7, \ldots$ Continue the count back in ones from any given from any number
Year 1	
Mental skills	Written strategies

Say the number that is 1 less that any given number up to 20	Children will develop an understanding of the subtraction sign through appropriate contexts. They understand subtraction as 'taking away' from a set and counting back. They will develop ways of recording calculations using pictures, number lines etc
Use number facts to 20	Children will use numbered number lines and practical resources to support calculation and teachers will demonstrate the use of the number line. Children will record their 'jumps' back on the top of the number line
	YEAR 2
Mental skills	Written strategies
Recall subtraction facts for each number to 20 eg 20-8, 18-9 18-13 $5+\square=10 \text { etc }$ Count back in multiples of 10 from a multiple of 10 Recognise... $\begin{aligned} & 20-7=3 \\ & 60-7=53 \\ & 60-17=43 \end{aligned}$	Children will be introduced to finding the difference by counting on using practical models and images 2-digit subtract 2-digit Subtraction using a number line and counting back $92-7$ $92-7=85$

Mental skills

Subtract:
1s from 3-digit
10s from 3-digit
100s from 3-digit

Before moving on, children will need to be confident in recalling number bonds to 10 in order to bridge to the next 10. they will also need to be confident in adding single digit number to multiples of ten mentally
$67-36=$

36
40
60
67

This method will be used across a range of contents and with decimals in the context of money and beyond.

Core Lesson

When subtracting three-digit numbers you can use a number line to help you. This method looks like adding, because it starts with the smaller number and then counts on to the bigger number to find the difference between the two numbers.

You then add up all the jumps you have made on the top:
$8+100+17=125$
The difference between between 392 and 517 is 125.

	$£ 5.60-£ 3.99=$ Partitioned numbers are then written under one another: Example: 74-27 $\begin{array}{rrr} 70+4 & \begin{array}{r} 70 \\ 70+4 \\ -4 \\ -20+7 \end{array} & -\frac{6}{7} \frac{14}{4} \\ \hline \end{array}$ Example: 741-367 $\begin{array}{rrr} 700+40+1 \\ -300+60+7 \\ \hline \end{array} \quad \begin{array}{r} 600 \\ 700+40+1 \\ \hline \end{array} \quad \begin{array}{r} 600+60+7 \\ \hline 300+70+4 \end{array}$ putting in another.
	YEAR 4
Mental skills	Written strategies
Use knowledge of inverse to solve calculations mentally.	Subtract from 4-digit number using column method.
	YEAR 5
Mental skills	Written strategies
Calculate subtraction complements to 1000. Recall decimal compliments to 1 using inverse $0.3+\square=1$	The expanded method leads children into the more compact method so that they understand its structure and efficiency. Year 5 Subtraction Written calculations - Use column subtraction to 11 subtract numbers with up $1 \not 1345$ to five digits, including $\quad 631$ exchanging where necessary. - Use complimentary addition for subtractions where the larger number is a multiple of 1000 Eg. 3000-2387 is done by

	Year 6 Subtraction Written calculations Find a difference by counting up $0.5-0.31=$ 0.31 Reduce the number of steps to make it more efficient Combine Complementary Addition as in Y 5 Decomposition with exchanging where needed - Larger number on top Start with units 0 is where problems arise Not borrowing- it is exchanging TTh Th H T O $\begin{array}{rrrrr} 7 & { }^{4} 5, & 5 & 3 & { }^{1} 2 \\ -\quad 2 & 2, & 6 & 2 & 3 \\ \hline 5 & 2, & 9 & 0 & 9 \\ \hline \end{array}$

VOCABULARY -SUBTRACTION

MULTIPLICATION

Early Mathematical development	
Mental skills	Written strategies
"... solve problems, including doubling, halving and sharing." "Suppose there were three people to share the bricks between instead of two".	Children will experience equal groups of objects and will count in 2 s and 10 s and begin to count in 5 s . They will work on practical problem solving activities involving equal sets or groups. Models and images will be used by the teacher to represent what is happening as outlined in EYFS PSRN - development matters
YEAR 1	
Mental skills	Written strategies
Know doubles to 10×10. and can recall rapidly To know doubles to 5×2. using fingers to support. Count in 2's, 5's, 10's by chanting and using number rhymes etc	Children will develop their understanding of multiplication and use jottings to support calculation: 3 times 5 is $5+5+5=15$ or 3 lots of 5 or 5×3 The representation of multiplication as an array along with the number line will be used to link the mental strategies children are using through counting to the written calculation.

e.g. Know if $2 \times 3=6 \ldots$.... Then $20 \times 3=60$	Multiplyin $\begin{array}{r} 947 \\ \times \quad 3 \\ \hline 1 \end{array}$	300 2700 4 12 . \qquad Wri Part by ' $23 \times$ 23 1 Di w we es th tens $\times 4$ is	360 0.9 2.7 \square ear meth ning to ndly' si 92 $=(20$ 80 $=92$ Numbe ultiply umber ce wh plus 2	6 54	$\begin{array}{r} 2700 \\ +\quad 360 \\ +\quad 54 \\ \hline 3114 \\ \hline \\ \\ \\ \hline 12 \\ +\quad 2.7 \\ \hline 14.7 \\ \hline \end{array}$
YEAR 5					
Mental skills	Written strategies				

Multiply by 101001000	AGREED Multiply by the largest value first... lastly by the ones. Multiply by the largest number fir then cross out when added. Also - 4-digit x 1-digit....... 4-digit x 2-digit.				n' numbers on top;
YEAR 6					
Mental skills	Written strategies				
Perform mental calculations, including with mixed operations and large numbers.	As year 5 Decimals - tenths, hundredths.				

VOCABULARY

DIVISION

Early Mathematical development	
Mental skills	Written strategies
Count back in 1's from any given number up to 10 Halving sharing	In division children will be introduced to both sharing and grouping through practical play activities.
YEAR 1	
Mental skills	Written strategies
Begin to count back in 10's, 2's, 5's using number rhymes	Children will understand equal groups and share items out in play and problem solving. They will count in 2 s and 10 s and later in 5 s . Children will use jottings to support practical calculation activities. They will experience division as both grouping and sharing using different models and images to represent their thinking, including links to arrays In division children will be introduced to both sharing and grouping through practical play activities. Children will understand equal groups and share items out in play and problem solving. They will count in 2 s and 10 s and later in 5 s . Models and images will be used by the teacher to represent what is happening when solving practical problems as outlined in EYFS PSRN development matters
YEAR 2	
Mental skills	Written strategies
Divide by 2 by 5 by 10	Children will use jottings to support practical calculation activities. They will experience division as both grouping and sharing using different models and images to represent their thinking, including links to arrays. $15+5=3$ 15 shared between 5

	Teachers will demonstrate the links between multiplication and division to support children in the later stages as they begin to 'chunk' on the number line Understand $-5 \times 4=204 \times 5=20 \quad 20 \div 54 \quad 20 \div 4=5$
	YEAR 3
Mental skills	Written strategies - formal $1^{\text {st }}$ introduced
Know tables - 3, 4, 8	Children will begin to develop their understanding of 'chunking' on a number line using repeated addition to add multiples of the divisor. There are 6 sweets. How many people can have 2 each? (How many 2's make 6?) Moving to ... 34 DISCOUNTED Expanded $2 \longdiv { 6 8 }$ $4 \times 2=8$ method

YEAR 4	
Mental skills	Written strategies
Multiples of 6, 7, 9, 25, 1000 Derive facts: $\begin{aligned} & 60 \div 3=20 \\ & 60 \div 30=2 \\ & 600 \div 3=200 \\ & 600 \div 30=20 \\ & 600 \div 300=2 \end{aligned}$	The division of a two/three-digit number will be introduced to children who are confident with multiplication and division facts. $100 \div 7=$ Initially they add several small chunks, but with practice they should look for the biggest 'chunk' they can eg. 10 x , 20x Children will be able to decide what to do after division and round up or down accordingly. For $81 \div 3$, the dividend of 81 is split into 60 , the highest multiple of 3 that is also a multiple 10 and less than 81, to give $60+21$. Each number is then divided by 3 . $\begin{aligned} 81 \div 3 & =(60+21) \div 3 \\ & =(60 \div 3)+(21 \div 3) \\ & =20+7 \\ & =27 \end{aligned}$ The short division method is recorded like this: $3 \longdiv { 2 0 + 7 }$ Hundreths are met in Year 4... so ... remainders to be shared out also??? Interpret remainders appropriately. Once a child has mastered division by chunking, they will often be shown the quicker 'bus stop' method. (This is also known as short-hand division or short division.) Here is a demonstration of this method:

	$142 \div 4=$ $\begin{array}{r} 035 \\ 4 \longdiv { 1 4 ^ { 1 } 2 ^ { 2 } 2 } \end{array}$ remainder 2 or fraction or decimal
	YEAR 5
Mental skills	Written strategies
Divide by 101001000	Those children with a secure understanding of place value and who can rapidly recall all multiplication facts will be introduced to the standard written method as a way to calculate more efficiently. DISCOUNTED Expanded method $259 \div 6=? \quad$ How many lots of 6 are there in 259? \qquad how many 6's will that take? Once a child has mastered division by chunking, they will often be shown the quicker 'bus stop' method. (This is also known as short-hand division or short division.) Here is a demonstration of this method:

VOCABULARY

EARLY YEARS	Group, share.
YEAR 1	share, share equally, one each, two each..., group, groups of, lots of, array
YEAR 2	divide, divided by, divided into, division, grouping, number line, left, left over
YEAR 3	grouping, inverse, short division, 'carry', remainder, multiple
YEAR 4	divisible by, factor
YEAR 5	quotient, prime number, prime factors, composite number (non-prime) common factor
YEAR 6	All the above

VIDEOS TO AID UNDERSTANDING:

Addition to 10
https://www.youtube.com/watch?v=OkW1Y11tGxw\&list=PLQqF8sn28L9wjDm8uJEJcRCDDoY6raPE
consolation and practice
https://www.youtube.com/watch?v=Uhymn4ESLPo\&list=PLQqF8sn28L9wiDm8uJEJcRCDDoY6raPE \&index=4
expanded 3 -digit column addition
http://www.teachertube.com/viewVideo.php?video id=24325
discussing appropriate methods - lower KS2
https://www.youtube.com/watch?v=RCCLseBLBSo
developing column subtraction
https://www.youtube.com/watch?v=dP8NIFLZzOg
upper ks2 column subtraction
https://www.youtube.com/watch?v=3ihxp2mqnhs
multiplication ks1
https://www.youtube.com/watch?v=YPWmOVt8vgw\&list=PLQqF8sn28L9yi34NpXK7Yffze7ZoXTiix
commutative multiplication
https://www.youtube.com/watch?v=VGkjiVfnGYI\&list=PLQqF8sn28L9yj34NpXK7Yffze7ZoXTiix\&index=2
grid method - lower ks2
https://www.youtube.com/watch?v=qyTRtoqYi7Q\&list=PLQqF8sn28L9yj34NpXK7Yffze7ZoXTiix
grid to compact method - upper ks2
https://www.youtube.com/watch?v=5pp0F53x q0\&list=PLQqF8sn28L9yj34NpXK7Yffze7ZoXTiix
09/12/15

Below is the official appendix from which our Policy has been constructed.

Mathematics Appendix 1: Examples of formal written methods for addition, subtraction, multiplication and division

"This appendix sets out some examples of formal written methods for all four operations to illustrate the range of methods that could be taught. It is not intended to be an exhaustive list, nor is it intended to show progression in formal written methods. For example, the exact position of intermediate calculations (superscript and subscript digits) will vary depending on the method and format used.

For multiplication, some pupils may include an addition symbol when adding partial products. For division, some pupils may include a subtraction symbol when subtracting multiples of the divisor."

Addition and subtraction
$789+642$ becomes

788
$+\quad 64$
143

Answer: 1431

874 - 523 becomes

874
$-\quad 523$
351

Answer: 351

932-457 becomes

$83^{12} 1$
$-\quad 477$
475

Answer: 475
$932-457$ becomes
11
932

- 45 7

56
475

Answer: 475

Short multiplication
24×6 becomes

Answer: 144

Long multiplication
24×16 becomes

2		
	2	4
\times	1	6
2	4	0
1	4	4
3	8	4

Answer: 384

Short division

Answer: 14
342×7 becomes

Answer: 2394

$$
124 \times 26 \text { becomes }
$$

	1	2	
	1	2	4
\times	2	6	
2	4	8	0
	7	4	4
3	2	2	4
1	1		

Answer: 3224
$432 \div 5$ becomes

Answer: 86 remainder 2
2741×6 becomes

Answer: 16446
124×26 becomes

122
124
$\times \quad 24$
744

$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{0}$
$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$
1	1		

Answer: 3224

Answer: $45 \frac{1}{11}$

Long division

Answer: 28 remainder 12

$$
\begin{aligned}
& 432 \div 15 \text { becomes }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12}{15}=\frac{4}{5}
\end{aligned}
$$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes

$$
\begin{array}{llllll}
& & & 2 & 2 & 8 \\
& 5 & 4 & 3 & 2 & 0 \\
& & 3 & 0 & \downarrow & \\
& & 1 & 3 & 2 & \\
& & 1 & 2 & 0 & \downarrow \\
& & & 1 & 2 & 0 \\
& & & 1 & 2 & 0 \\
\hline & & & & 0
\end{array}
$$

Answer: 28.8

Providing a context for calculation: It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

